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Abstract
We present an extended analysis of the wavevector dependent shear viscosity of monatomic and
diatomic (liquid chlorine) fluids over a wide range of wavevectors and for a variety of state
points. The analysis is based on equilibrium molecular dynamics simulations, which involve the
evaluation of transverse momentum density and shear stress autocorrelation functions. For
liquid chlorine we present the results in both atomic and molecular formalisms. We find that the
viscosity kernel of chlorine in the atomic representation is statistically indistinguishable from
that in the molecular representation. The results further suggest that the real space viscosity
kernels of monatomic and diatomic fluids depend sensitively on the density, the potential energy
function and the choice of fitting function in reciprocal space. It is also shown that the reciprocal
space shear viscosity data can be fitted to two different simple functional forms over the entire
density, temperature and wavevector range: a function composed of n-Gaussian terms and a
Lorentzian-type function. Overall, the real space viscosity kernel has a width of 3–6 atomic
diameters, which means that the generalized hydrodynamic constitutive relation is required for
fluids with strain rates that vary nonlinearly over distances of the order of atomic dimensions.

1. Introduction

Fluid dynamics at atomic and molecular scales still present
a challenge for theoreticians as well as for experimentalists.
Molecular dynamics (MD) is a computational tool that has
contributed significantly to the fundamental understanding
of these systems by providing information about processes
not directly accessible by experimental studies. A central
problem in the study of fluids at such small length and time
scales is the computation of meaningful transport properties.
Many equilibrium molecular dynamics (EMD) as well as
nonequilibrium molecular dynamics (NEMD) simulations of
nanofluids have been performed since the early 1980s [1–5].
In most of these simulations the stress was treated as being
dependent on the local strain rate rather than the entire strain
rate distribution in the system. Todd et al have recently shown
that in all but the simplest flows (e.g. planar Couette and
Poiseuille flows) and for velocity fields with high gradients in
the strain rate over the width of the real space viscosity kernel,
non-locality can play a significant role [6, 7]. In the case of
a homogeneous fluid, a local viscosity defined by Newton’s

viscosity law as

Pxy(r, t) = −η0γ̇ (r, t) (1)

even exhibits singularities at points where the strain rate is
zero [8–11]. In equation (1) Pxy(r, t) represents the (x, y) off-
diagonal component of the pressure tensor, γ̇ (r, t) is the shear
strain rate at position r and time t , and η0 is the local shear
viscosity. In general, a non-local constitutive equation that
allows for spatial and temporal non-locality can be expressed
as [12, 13]

Pxy(r, t) = −
∫ t

0

∫ ∞

−∞
η(r − r′, t − t ′)γ̇ (r′, t ′) dr′ dt ′, (2)

for a homogeneous fluid. η(r−r′, t −t ′) is the viscosity kernel.
In the situation where the strain rate is constant in time and only
varies with respect to the spatial coordinate y, equation (2) can
be written as

Pxy(y) = −
∫ ∞

−∞
η(y − y ′)γ̇ (y ′) dy ′. (3)
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The viscosity kernel for a Newtonian fluid is a Dirac delta
function. In reciprocal space equation (3), can be expressed
as

P̃xy(ky) = −η̃(ky) ˜̇γ (ky), (4)

where ky is the y component of the wavevector as defined
later in section 3. Such a constitutive equation is expected to
be necessary for the description of flows in highly confined
systems, due to the large change in the strain rate with position
in the vicinity of the wall [8].

The best available theoretical predictions of the wavevec-
tor dependent viscosity are based on mode-coupling theory and
generalized Enskog theory [14–16]. However, these theories
do not quantitatively agree with data obtained via computer
simulations [12]. The theoretical predictions focus on the
transverse momentum density autocorrelation function, which
is found by an iterative numerical solution of a system of
nonlinear equations. Consequently, the theories do not result
in analytical expressions for the correlation functions or the
wavevector dependent transport coefficients, which are the
focus of the present study. More recently, a modified collective
mode approach has been successfully applied by Omelyan
et al [17] to the TIP4 model of water. Unlike other semi-
phenomenological approaches used to describe the wavevector
dependence of the viscosity for TIP4P and SPC/E models of
water by Bertolini et al [18] and Palmer [19], Omelyan et al
reproduced the reciprocal space kernel using a relatively small
number of modes.

In this paper, we extend the work done by Hansen et al
[20] and focus on computing the spatially non-local viscosity
kernel for monatomic and diatomic fluids over a wider range
of wavevectors, state points and potential energy functions.
We are specifically interested in identifying functional forms
that fit the reciprocal space kernel data. On the basis of these
results, we are be able to assess the length scale (i.e. the width
of the real space kernel) over which the governing generalized
constitutive relation equation (3) must be used. We expect
that non-local transport phenomena would be relevant in shock
waves [12, 21–24], shear banding [25], flows of micellar
solutions [26], suspensions of rigid fibers [27] and jammed or
glassy systems [28].

This paper is structured as follows. In section 2.1 we give
an overview of the general formulation and the expressions
for the complex wavevector and frequency dependent viscosity
are given. In section 3 we describe the simulation
methodology and conditions. In section 4 we present our
molecular dynamics simulation data and compare the results
for the viscosity kernels for monatomic and diatomic fluids,
particularly the shape of the kernels. Finally, we summarize
and conclude our analysis in section 5.

2. Methodology

We shall briefly introduce the background theory for this work,
specifically the wavevector dependent momentum density and
stress autocorrelation functions and their relationship to the
viscosity in the atomic and molecular formulations.

2.1. Wavevector dependent momentum density for atomic and
molecular fluids

For a single component atomic fluid the real space microscopic
momentum density is given by [13]

J(r, t) = ρa(r, t)v(r, t) =
Na∑

i=1

mi vi(t)δ(r − ri ) (5)

where ρa(r, t) = ∑Na
i=1 miδ(r − ri ) is the mass density, mi ,

ri and vi are the mass, position and velocity of atom i . The
summation runs over the number of atoms Na in the system.
The Fourier transform of the momentum density is

J̃(k, t) =
Na∑

i=1

mi vi (t)eik·ri (6)

while the Fourier transform of the mass density is ρ̃a(k, t) =∑Na
i=1 mi eik·ri . We define the Fourier transform of a function

f (r) as F[ f (r)] = f̃ (k) = ∫ ∞
−∞ eikr f (r) dr .

The atomic representation of the momentum density for a
molecular fluid can be written in real space as [29]:

JA(r, t) = ρa(r, t)v(r, t) =
Nm∑
i=1

Ns∑
α=1

miαviα(t)δ(r − riα) (7)

where the mass density is defined as ρa(r, t) = ∑Nm
i=1

∑Ns
α=1

miαδ(r − riα). The inner summation extends over the Ns mass
points in a molecule and the outer summation extends over the
number of molecules Nm in the system. In general, Ns depends
on the molecule index i for a multicomponent system, but in
our systems Ns is the same for all molecules and the interaction
sites are assumed to have identical mass, namely miα . The
Fourier transform of the momentum density is

J̃A(k, t) =
Nm∑
i=1

Ns∑
α=1

miαviα(t)eik·riα (8)

where the transformed mass density is ρ̃a(k, t) = ∑Nm
i=1

∑Ns
α=1

miαeik·riα . For molecules composed of Ns atoms we can
define the mass of molecule i , Mi = ∑Ns

α=1 miα, position
of the molecular center of mass as ri = ∑Ns

α=1 miαriα/Mi ,
position of site α of molecule i relative to the center of mass of
molecule i as Riα = riα − ri , and center of mass momentum
of the molecule as pi = ∑Ns

α=1 piα . This means that the
atomic mass density can be written in k-space as ρ̃a(k, t) =∑Nm

i=1

∑Ns
α=1 miαeik·(ri +Riα ). If we expand this relation further

we can express the atomic mass density in terms of molecular
mass density in which we define the mass density in the
molecular representation as ρ̃m(k, t) = ∑Nm

i=1 Mi eik·ri in
reciprocal space and as ρm(r, t) = ∑Nm

i=1 Miδ(r − ri ) in real
space, respectively.

In a similar way we can expand the atomic momentum
density about the molecular center of mass: J̃A(k, t) =∑Nm

i=1

∑Ns
α=1 miαviα(1 + ik · Riα + · · ·)eik·riα . The Fourier

transform of the momentum density in the molecular
representation can then be defined as

J̃M(k, t) =
Nm∑
i=1

Mi vi (t)eik·ri . (9)

2



J. Phys.: Condens. Matter 22 (2010) 195105 R M Puscasu et al

A complete procedure for expressing the mass and momentum
densities in physical and reciprocal space for atomic and
molecular fluids has been discussed in more detail by Todd and
Daivis [29].

2.2. Wavevector dependent pressure tensor

For a monatomic system the wavevector dependent pressure
tensor is defined as [29]

P̃(k, t) =
N∑

i=1

pi pi

mi
eik·ri − 1

2

N∑
i=1

N∑
j �=i

ri j Fi j gi j(k)eik·ri (10)

where Fi is the force on atom i due to atom j and gi j(k) =
(eik·ri j − 1)/ik · ri j = ∑∞

n=0(ik · ri j )
n/(n + 1)! is the Fourier

transform of the Irving–Kirkwood Oi j operator [30].
For a molecular system the molecular pressure tensor is

the pressure calculated using the intermolecular forces and the
molecular center of mass momenta. The atomic pressure on
the other hand includes all atomic momenta and all interatomic
forces and constraint forces. Thus the wavevector dependent
pressure tensor for constrained diatomic fluid can be written in
atomic representation as

P̃A(k, t) =
Nm∑
i=1

2∑
α=1

piαpiα

miα
eik·riα

− 1
2

Nm∑
i=1

2∑
α=1

Nm∑
j �=i

2∑
β=1

riα jβFiα jβgiα jβ(k)eik·riα jβ

+
Nm∑
i=1

2∑
α=1

riαFC
iαgiα(k)eik·riα (11)

where Fiα jβ is the LJ force acting on site α of molecule i
due to site β of molecule j , and FC

iα is the bond constraint
force on site α of molecule i . riα jβ = r jβ − riα is the
minimum image separation of site α of molecule i from site
β of molecule j . giα jβ(k) = (eik·riα jβ − 1)/ik · riα jβ and
giα(k) = (eik·riα − 1)/ik · riα .

The pressure tensor for a diatomic molecule in the
molecular representation is defined as

P̃M(k, t) =
Nm∑
i=1

pi pi

Mi
eik·ri − 1

2

Nm∑
i=1

Nm∑
j �=i

ri j FN
i j gi j(k)eik·ri j (12)

where, FN
i j represents the total intermolecular force on

molecule i due to molecule j . ri j = r j − ri is the minimum
image separation of the center of mass of molecule i from
the center of mass of molecule j . In cases where two sites
on two different periodic images of the same molecule may
interact, the correct value of ri j = r j − ri corresponding to
the particular images of molecule i and j in Fiα jβ must be
used. Although this is unlikely to happen in diatomic fluids
it is particularly important in simulation of long molecules.
The momenta appearing in these equations, piα , pi , are the
momenta appearing in the respective atomic and molecular
equations of motion equations (21) and (24).

2.3. Wavevector and frequency dependent viscosity

The complex wavevector and frequency dependent viscosity
can be evaluated by using two different expressions in terms
of the Fourier–Laplace transform of the transverse momentum
density autocorrelation function (ACF), C⊥(k, t), and the
Fourier–Laplace transform of the stress tensor autocorrelation
function, N(k, t) [13]. We define the complex Laplace
transform (one-sided Fourier transform) as L[ f (t)] = f̃ (w) =∫ ∞

0 f (t)e−iωt dt . We also note that for the sake of simplicity
of notation and consistency with the notation used in previous
publications, in what follows, we drop the tilde sign over
the correlation functions and keep the tilde notation over the
Fourier–Laplace transformed correlation functions only. If
we set k = (0, ky, 0) and let Jx be the component of the
momentum density in the x direction, the expression for the
wavevector and frequency dependent viscosity in terms of
C̃⊥(ky, ω) takes the form [13]:

η̃(ky, ω) = ρ

k2
y

C⊥(ky, t = 0) − iωC̃⊥(ky, ω)

C̃⊥(ky, ω)
(13)

where ρ is the number density of the fluid and C̃⊥(ky, ω)

is the Laplace transform of the ensemble averaged transverse
momentum density autocorrelation function C⊥(ky, t), which
is defined as

C⊥(ky, t) = 1

V
〈Jx(ky, t)Jx(ky, 0)〉. (14)

The zero time value of C⊥(ky, t = 0) in the thermodynamic
limit is

C⊥(ky, t = 0) = ρkBT (15)

where kB is Boltzmann’s constant. Due to finite time averaging
and finite system size, the value of C(ky, t = 0) obtained from
simulation differs insubstantially from the exact value given by

C⊥(ky, t = 0) = ρkBT
3N − 4

3N
(16)

because the total peculiar kinetic energy and three components
of the momenta are constants of the motion in our simulations.
We also note that the number of degrees of freedom in
the simulated system has not been taken into account in
equation (15), therefore we use the simulated value in our
calculations to ensure numerical consistency of the computed
properties.

The expression for the wavevector and frequency
dependent viscosity in terms of the autocorrelation function of
the shear stress Ñ (ky, ω) takes the form:

η̃(ky, ω) = Ñ (ky, ω)

C(ky, t = 0)/ρkBT − k2 Ñ(ky, ω)/iωρ
(17)

where

Ñ(ky, ω) = 1

V kBT
L[〈Pxy(ky, t)Pxy (ky, 0)〉]. (18)

In the zero wavevector limit, a generalization of the Green–
Kubo expression for the shear viscosity for an isotropic fluid

3
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Table 1. Simulation details.

WCA LJ Chlorine

Site number density, ρa 0.375, 0.480, 0.840 0.840 1.088
Temperature, T 0.765, 1.0 0.765, 1.0 0.97
Number of atoms, Na 108, 2048, 6912 108, 2048, 6912 216, 1728
Number of sites, Ns 1 1 2
Bond length, l — — 0.63
LJ cutoff, rc 21/6 2.5 2.5

allows the transverse momentum flux to be in an arbitrary
direction rather than along a coordinate axis and can be written
in terms of the stress tensor as [31, 32]:

η = V

10kBT

∫ ∞

0
〈Pos(t) : Pos(0)〉 dt (19)

where the os superscript denotes the traceless symmetric part
of the stress tensor Pos(t) = 1

2 [P(t) + PT (t)] − 1
3 tr[P(t)]1 and

V is the simulation volume.
In the case ω → 0 and ky → 0, relation (17) reduces

to the Green–Kubo formula [31]. All the non-zero wavevector
integrals, equation (18), converge to zero [13]. By computing
the integrals one can computationally verify the zero values
of the zero frequency limit of the function Ñ (k, ω) and
thus demonstrate why neither substitution of ω = 0 into
equation (17) nor evaluation of equation (18) at non-zero
wavevector yields the zero frequency wavevector dependent
viscosity. Therefore the relation in equation (13) must be used
when non-zero wavevector viscosities are calculated.

3. Simulation details

We use the Edberg, Evans, and Morriss algorithm [33–35]
with an improved cell neighbor list construction algorithm [36]
to perform equilibrium simulations at constant N, V , TM. N
is either the number of atoms or molecules and TM is the
molecular temperature as defined by equation (26). For the
atomic fluids studied in this work, the atoms interact via
a Lennard-Jones (LJ) or Weeks–Chandler–Andersen (WCA)
potential energy function [37]. The LJ atoms have an
interaction potential truncated at rc = 2.5σ and WCA atoms
have an interaction potential truncated at rc = 21/6σ [37]. In
general:


i j(ri j) =

⎧⎪⎨
⎪⎩

4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6]
− 
c, ri j < rc

0, ri j � rc

(20)
where ri j is the interatomic separation, ε is the potential well
depth, and σ is the value of ri j at which the unshifted potential
is zero. The shift 
c is the value of the unshifted potential at the
cutoff ri j = rc, and is introduced to eliminate the discontinuity
in the potential energy. At distances greater than the cutoff
distance rc, the potential is zero.

Our diatomic model of liquid chlorine is similar the one
used by Edberg et al [38], Hounkonnou et al [39], Travis
et al [40, 41] and more recently by Matin et al [42, 43] to
allow a direct comparison of our results with previous work.

This model represents chlorine as a diatomic LJ molecule with
rc = 2.5σ and a fixed bond length of 0.63σ . For an adequate
representation of the properties of chlorine the LJ parameters
are: σ = 3.332 Å and ε/kB = 178.3 K. Liquid chlorine
systems of 108 and 864 molecules are studied at a reduced
site number density of ρa = 1.088 and a reduced molecular
temperature TM = 0.970. We summarize the most important
simulation parameters in table 1.

All our simulations were carried out in a cubic box with
periodic boundary conditions. The fifth-order Gear predictor
corrector algorithm [44, 45] with time step δt = 0.001 was
employed to solve the equations of motion. The equations of
motion can be written for a monatomic fluid in the isokinetic
ensemble (at equilibrium) as [13]:

ṙi = pi

mi
, ṗi = Fi − ζApi (21)

where i denotes atom i . ri is the position, pi is the momentum
and mi is the mass of the designated atom. Fi is the force
on atom i due to other atoms and ζA is the atomic thermostat
multiplier. The thermostat multiplier is chosen so as to fix the
kinetic temperature. We use the value of ζA that results from
the application of Gauss’ principle of least constraint to the
imposition of constant kinetic temperature:

ζA =
∑N

i=1 Fi · pi∑N
i=1 p2

i

. (22)

The atomic temperature TA for a system of Na atoms with no
internal degrees of freedom is defined as

TA = 1

(d Na − Nc)kB

〈 Na∑
i=1

p2
i

mi

〉
, (23)

where d is the dimensionality of the atomic system and Nc is
the number of constraints on the system (including constraints
for conserved quantities).

The equations of motion (EOM) for a molecular fluid can
be formulated in either atomic or molecular versions. In fact
the molecular versions of the isothermal EOM with a molecular
thermostat at equilibrium and in a steady state are similar to
atomic EOM with a molecular thermostat, provided that all of
the relevant forces are included [29]. The thermostatted EOM
for molecular systems are given by [29]

ṙiα = piα

miα
, ṗiα = Fiα + FC

iα − ζM
miα

Mi
pi (24)

where iα denotes site α on molecule i . riα is the position, piα

is the momentum and miα is the mass of the site. The force on

4
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a site is separated into two terms: Fiα is the contribution due
to the Lennard-Jones-type interactions on site α of molecule i
and FC

iα is either the constraint force or the bonding force. The
details of the constraint algorithm used to calculate FC

iα have
been discussed previously [33, 38, 47]. ζM is the molecular
thermostat multiplier, given by

ζM =
∑Nm

i=1 Fi · pi/Mi∑NM
i=1 p2

i /Mi

(25)

where Fi is the total force acting on molecule i and Mi is
the mass of molecule i . ζM is derived from Gauss’ principle
of least constraint and acts to keep the molecular center of
mass kinetic temperature TM constant. Several algorithms are
available for this purpose [46]. The molecular temperature TM

is defined by

TM = 1

(d Nm − Nc)kB

〈 Nm∑
i=1

p2
i

mi

〉
(26)

where Nc is the number of constraints on the center of mass
degrees of freedom and depends on the total number of
molecules and the number of constraints on the system.

All the systems were equilibrated for at least 106 time
steps. The results from production runs were ensemble
averaged over 14 runs, each of length 106 steps (i.e. a total of
1.4×107 time steps). The transverse momentum density ACFs
were computed over at least 20 reduced time units and the
stress ACFs were computed over at least 40 reduced time units.
Both the transverse momentum density and stress ACFs were
computed at wavevectors kyn = 2πn/L y where mode number
n is from 0 to 40 with increment 2 and L y = (Na/ρ)1/3.
For the remainder of this paper we drop the n index in kyn

for simplicity. The ACFs were Laplace transformed with
respect to time using Filon’s rule [46]. We do not report the
frequency dependent viscosities in this work. The wavevector
and frequency dependent viscosities were calculated using
equations (13) and (17). Equation (13) was used to obtain the
non-zero wavevector and frequency dependent viscosities and
equation (17) was used to obtain the zero wavevector viscosity.

In this work, all quantities are expressed in reduced
Lennard-Jones units. Thus, our reference units are the reduced
length r∗ = r/σ , reduced number density ρ∗ = ρ/σ 3, reduced
temperature T ∗ = kBT/ε, reduced time t∗ = t/(σ (m/ε))1/2,
reduced pressure P∗ = P(σ 3/ε), reduced energy E∗ = E/ε

and reduced viscosity η∗ = ησ 2/
√

(mε). For the remainder of
this paper we apply these units and omit writing the asterisk.
We will not distinguish between TM and TA which are equal at
equilibrium, but simply use T to indicate the temperature.

4. Results and discussion

The autocorrelation functions were evaluated for both 108
and 864 molecule systems in order to determine whether
the results were system size dependent. There were no
observed differences within the statistical errors in both
monatomic and diatomic systems. We also note that in
order to limit the number of figures, we do not display

Figure 1. η̃(ky) versus ky for chlorine calculated using atomic and
molecular formalisms (ρa = 1.088, T = 0.97, Na = 1728).

the results for the transverse momentum density and stress
autocorrelation functions. However, we must mention that
for monatomic systems both quantities (i.e. the transverse
momentum density and stress ACFs) were in good agreement
with those previously observed for Lennard-Jones monatomic
liquids [19, 20] and their running integrals have fully
converged which suggests that the correlation functions have
decayed to zero.

4.1. Viscosity kernels in reciprocal space

The reciprocal space kernels for monatomic and diatomic
fluids are plotted in figures 1–3. The error bars are smaller
than the symbol sizes and therefore omitted in figures 2 and 3.
Generally the statistical reliability of reciprocal space kernel
data increases as ky increases.

Our zero wavevector, zero frequency viscosities for
monatomic fluids agree well with those available in the
literature. For the WCA system at the state point (ρa = 0.375,
T = 0.765) we found η0 = 0.27 ± 0.01 which agrees with
the results of Hansen et al 0.273 [12, 20], while at the state
point (ρa = 0.840, T = 1.0) we found η0 = 2.29 ± 0.07,
in agreement with the results of Matin et al (2.1 ± 0.2) [42].
For chlorine we found η0 = 6.89 ± 0.32, which agrees with
the limiting values (6.7 ± 0.4) of the shear and elongational
viscosities at zero strain rate [42].

The wavevector dependent viscosity for diatomic systems,
figure 1, depicts a similar behavior within the statistical
uncertainty in both atomic and molecular formalisms.

It has been shown previously that numerous one parameter
functions failed to capture the behavior of the reciprocal space
kernel data [20]. We therefore present the best fits with two
or more fitting parameters. We have identified two functional
forms that fit the data well: an NG term Gaussian function

η̃G(ky) = η0

NG∑
j

A j exp(−k2
y/2σ 2

j ) A j , σ j ∈ R+ (27)

and a Lorentzian-type function

η̃L(ky) = η0

1 + α|ky |β α, β ∈ R+. (28)

5



J. Phys.: Condens. Matter 22 (2010) 195105 R M Puscasu et al

Figure 2. Normalized kernel data, best fit of equation (27) with NG = 2 and 4, and equation (28) and difference between the fits: (a) best fits
to normalized kernel for chlorine fluid (ρa = 1.088, T = 0.97, Na = 1728); (b) best fits to normalized kernel for LJ fluid (ρa = 0.840,
T = 1.0, Na = 2048); (c) differences between the kernels and simulation data (a); (d) differences between the fitted kernels (b).

Figure 3. Reciprocal space kernels of monatomic and diatomic fluids: (a) Kernel data of a WCA fluid at two different densities (T = 0.765,
Na = 2048); (b) Best fit of normalized kernel data (a) to Lorentzian-type function equation (28); (c) Kernel data of a WCA fluid and LJ fluid
at the same state point (ρa = 0.840, T = 1.0, Na = 2048), Chlorine at (ρa = 1.088, T = 0.97, Na = 1728); (d) Best fit of the normalized
kernel data (c) to the Lorentzian-type function equation (28).

6
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Table 2. Zero frequency, zero wavevector shear viscosity and fitted parameter values for monatomic and diatomic systems.

WCA WCA WCA LJ LJ Chlorine

State Point ρa 0.375 0.480 0.840 0.840 0.840 1.088
T 0.765 0.765 1.000 0.765 1.0 0.97

System size Na 2048 1728

η0 0.265 (0.273 [20]) 0.392 2.290 2.810 2.650 6.889

2-term Gaussian, A2 = 1 − A1 equation (27) A 0.189 (0.440 [20]) 0.309 0.155 0.093 0.107 0.407
σ1 12.48 (4.750 [20]) 6.916 8.122 10.04 9.088 5.377
σ2 2.116 (1.376 [20]) 1.835 2.592 2.778 2.759 1.236
sr 0.007 (0.005 [20]) 0.013 0.044 0.021 0.027 0.082

2-term Gaussian equation (27) A1 0.792 0.687 0.874 0.907 0.892 0.592
A2 0.174 0.254 0.155 0.094 0.106 0.407
σ1 2.245 2.113 2.592 2.776 2.765 1.237
σ2 13.36 7.745 8.124 10.02 9.127 5.377
sr 0.007 0.011 0.035 0.022 0.031 0.081

4-term Gaussian equation (27) A1 0.432 0.566 0.778 0.689 0.868 0.398
A2 0.394 0.248 0.118 0.190 0.047 0.538
A3 0.120 0.138 0.088 0.114 0.089 0.055
A4 0.056 0.047 0.017 0.017 0.020 0.008
σ1 3.228 2.826 2.950 2.709 2.814 4.355
σ2 1.261 0.821 0.651 2.709 0.145 1.155
σ3 8.165 6.973 8.496 7.037 7.628 10.46
σ4 15.19 14.74 23.66 24.94 19.99 37.56
sr 0.008 0.002 0.012 0.014 0.024 0.018

Lorentzian-type equation (28) α 0.198 (0.180 [20]) 0.170 0.062 0.041 0.043 0.239
β 1.562 (1.662 [20]) 1.715 2.326 2.602 2.572 1.667
sr 0.002 (0.005 [20]) 0.005 0.042 0.018 0.042 0.016

Table 3. Total amplitude for Gaussian functional form.

WCA LJ Chlorine

State Point ρa 0.375 0.480 0.840 0.840 0.840 1.088
T 0.765 0.765 1.000 0.765 1.0 0.97

2-term Gaussian
∑2

j=1 A 0.966 0.941 1.029 1.001 0.998 0.999
4-term Gaussian

∑4
j=1 A 1.002 0.999 1.001 1.010 1.024 0.999

We present the best fits of the data to (i) a two-term Gaussian
function with freely estimated amplitudes (i.e. unconstrained
fitting) termed as η̃G2 , (ii) to a two-term Gaussian function with
interdependent amplitudes (i.e. constrained fitting

∑NG
j A j =

1) given by Hansen et al [20] and termed as η̃G2H , (iii) to a
four-term Gaussian function with freely estimated amplitudes,
termed as η̃G4 and (iv) to the Lorentzian-type function,
equation (28). In order to measure the magnitude of the
residuals we use the residual standard deviation defined as
sr =

√∑ns
n=1 r 2/(ns − n p) where ns is the number of data

points, n p is the number of fitting parameters, and r is the
residual [48]. After an iterative curve fitting procedure the
accurate estimation of η0 was kept fixed allowing all other
parameters in equations (27) and (28) to be used as fitting
parameters. In table 2 we have listed the fitting parameters for
monatomic and diatomic molecular fluids and compared to the
previous results where possible. A useful check of the fitting
can be performed by calculating the total Gaussian amplitudes
which should converge to the value of 1, table 3.

The reciprocal space results presented in figure 2 for LJ
and chlorine systems demonstrate that the four-term Gaussian

function fits the data much better than the other two forms with
a difference between the data and the fit of less than 0.5%, see
figure 2(c). The two-term Gaussian η̃G2H fits the kernel data
better than the Lorentzian-type function in the low-ky region,
figure 2(a), which suggests a more Gaussian-like behavior
in the low-ky region, a fact previously observed by Hansen
et al [20] for atomic fluids modeled with WCA potentials.
Nevertheless the difference between the two-term Gaussian fit
and data is less than 2% which still makes the η̃G2H a good
analytical three parameter approximation of the reciprocal
space viscosity kernel. The maximum difference between the
Lorentzian-type fit and Gaussian fits are around 4% while the
maximum difference between the Gaussian fits is around 2%,
see figure 2(d). Essentially, this suggests that, when computing
the real space kernels, the four-term Gaussian functional form
is to be trusted. It is obvious that eight parameters in the
four-term Gaussian make its use less convenient, but on the
other hand the Gaussian function can analytically be inverse
Fourier transformed while the inverse Fourier transform of the
Lorentzian-type function can only be evaluated numerically for
general values of β .
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Figure 3(a) shows the kernel data for a WCA fluid at
two different densities along with two sets of data published
previously by Hansen et al [20]. EMD is the set obtained
from an equilibrium MD simulation at the same state point
(ρa = 0.375, T = 0.765) and NEMD is the set obtained
from a nonequilibrium MD simulation based on the sinusoidal
transverse force (STF) method. An excellent agreement
between both sets of data was found. Figure 3(b) shows
the normalized fit to equation (28). The normalized kernels,
figure 3(b), show a similar behavior for kn � 4. Although the
higher density kernel is slightly lower for kn � 4 they show a
similar limiting behavior. This effect was not seen by Hansen
et al due to lack of data for high wavevectors. Figure 3(d)
indicates that despite the difference between the interaction
potentials, the results for LJ and WCA fluids are very
close. This confirms that transport is dominated by repulsive
interactions, rather than attractive. The sharper kernel for
the diatomic system, figure 3(d), suggests a more Lorentzian-
type behavior in the low wavevector region. It is also
important to mention that even though the fitting parameters
are significantly affected by temperature, the resulting kernels
vary weakly over the range of temperatures chosen here. This
was also observed by Hansen et al for WCA monatomic fluids.

4.2. Viscosity kernels in physical space

The viscosity kernel in reciprocal space is an even function
since it is symmetric about the origin; thus the real space kernel
is symmetric because the Fourier transform keeps the even
properties of the function. This means that the viscosity kernel
in physical space can be found via an inverse Fourier cosine
transform, F−1

c [· · ·], of the viscosity kernel in reciprocal space.
Since the integral is being computed over an interval symmetric
about the origin (i.e. −∞ to +∞), the second integral must
vanish, and the first may be simplified to give:

F−1
c [η̃(ky)] = η(y) =

√
2

π

∫ ∞

0
η̃(ky) cos(ky y) dky. (29)

The inverse Fourier cosine transform of the Gaussian function,
equation (27), exists [49] and it is even possible to obtain an
analytical expression. For an NG term Gaussian function the
inverse Fourier cosine transform is

ηG(y) = η0√
2π

NG∑
j

A jσ j exp[−(σ j y)2/2] A j , σ j ∈ R+.

(30)
Although the Lorentzian-type function given in equa-

tion (28) fulfils the criteria for having an inverse Fourier
transform ηL(y) (i.e. the function is absolutely integrable,
square integrable and the function and its derivative are
piecewise continuous), the integral in equation (29) is not
readily obtained analytically in the general case. However, the
integral can be evaluated numerically. In this work, a Simpson
method has been employed for this purpose.

The real space kernels for atomic and diatomic fluids
at zero frequency are presented in figure 4–6. Figure 4(a)
shows the resulting kernels for chlorine and figure 4(b) shows
the resulting kernels for a LJ fluid extracted from two-term

and four-term Gaussian functions equation (30), and inverse
Fourier transform of equation (28). We find very little
difference between the kernels obtained via two- and four-
term Gaussians for these systems. Figures 4(c) and (d) show
the differences between all three fits. It can be seen that
there exists a significant difference (almost 25%) between the
kernels extracted from Gaussian and Lorentzian-type functions
for small y. The discrepancy decreases rapidly as y increases
and becomes approximately zero for y � 1.5. The width of the
kernel for chlorine is roughly 4-6 atomic diameters, figure 4(a),
and 3–5 atomic diameters for monatomic LJ and WCA fluids,
figure 4(b).

For monatomic systems at relatively low densities (ρa =
0.375–0.480), the real space kernels are affected considerably
by the functional form chosen to fit the reciprocal space
kernel, figure 5. For instance, the equally weighted two-
term Gaussian function, figure 5(a), distorts the real space
kernels and predicts a noticeably higher η(y = 0) value. As
we increase the density, the discrepancy between Gaussian
functions, as well as between Gaussian and Lorentzian-type
functions, only partially reduces, figures 5(b) and (d). The
width of the kernel for WCA fluids at low density is roughly
2–4 atomic diameters.

In figures 6(a) and (b) we compare the unnormalized
kernel data in y space extracted from four-term Gaussian and
Lorentzian-type functional forms for all the simulated systems.
Despite the fact that the difference between the reciprocal
kernels is less than 4%, figure 2(d) (e.g. chlorine—dashed
line), the kernels for the corresponding systems in real space
look noticeably different (figures 6(a) and (b)), for all the
systems (e.g. chlorine—dashed dotted line). However, the zero
wavevector viscosities obtained from both functional forms
are very close, with less than 2% error. We can determine
the zero wavevector viscosities η0 = η(k = 0, ω = 0)

by integrating the real space kernel over y, and thus test our
numerical analysis. The zero wavevector viscosity η0 obtained
from a Gaussian function ηG(y) is

η0 =
∫ ∞

−∞
ηG(y) dy

= η0√
2π

∫ ∞

−∞

{∑
j

A jσ j exp[−(σ j y)2/2]
}

dy. (31)

Since the general analytical expression for ηL(y) does not
exist [20] we evaluate the integral numerically and present the
results from all functional forms in table 4. A comparison of
the viscosities in table 4 with the simulated zero frequency
zero wavevector shear viscosities given in table 2 shows an
integration error of less than 3%. This confirms the accuracy
of our numerical analysis techniques.

It is of interest to discuss the real space viscosity kernels
for monatomic and diatomic systems from a structural point
of view. For this purpose we define a structural normalization
factor

ξg =
∫ ∞

0 r [g(r) − 1]2 dr∫ ∞
0 [g(r) − 1]2 dr

(32)

where g(r) is the pair distribution function (PDF). Equa-
tion (32) is a measure of the range over which the correlation
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Figure 4. Real space kernel of monatomic and diatomic fluids as predicted by Gaussian and Lorentzian fits of reciprocal space kernel data:
(a) chlorine (ρa = 1.088, T = 0.97); (b) LJ (ρa = 0.840, T = 1.0); (c) differences between the kernels shown in (a); (d) differences between
the kernels shown in (b).

Table 4. Effective viscosities evaluated from ηG4 (y), ηG2H (y) and numerically from η̃L(k). The values can be compared to the zero
frequency, zero wavevector viscosities shown in table 2.

WCA LJ Chlorine

State Point ρa 0.375 0.480 0.840 0.840 0.840 1.088
T 0.765 0.765 1.000 0.765 1.000 0.97

2-term Gaussian η0 0.265 0.392 2.290 2.723 2.614 6.881
4-term Gaussian η0 0.265 0.390 2.288 2.807 2.653 6.897
Lorentzian η0 0.269 0.428 2.320 2.913 2.711 7.049

function decays to 1 and therefore could be regarded as a
correlation length of the pair distribution function. The PDF
(or structure factor in reciprocal space) can be defined either
in terms of the vector norm ri j between the atoms i and j or
between the centers of mass of molecules i and j : g(r) =
〈

∑N
i=1

∑N
j>1 δ(|r−ri j |)

4πr2 Nρ
〉, where N is the total number of atoms or

molecules, and ρ is the atomic or molecular number density.
The pair distribution functions and normalization factors

are presented in figure 7. We can see that the PDF
are typical monatomic and diatomic Lennard-Jones pair
correlation functions. ξg generally increases as we increase the
density and temperature from 0.605 at state point ρa = 0.375,
T = 0.756 to 0.730 at ρa = 0.480, T = 1.0 and only slightly
increases as we increase the cutoff distance, i.e. switch from
WCA system to a LJ system at the same state point. ξg for

chlorine at state point ρa = 1.088, T = 0.97 was found to be
0.585.

The normalized kernels with respect to η(y = 0) and
spatial scaling factor ξg are shown in figures 8(a) and (b).
While generally the width of unnormalized kernels increases
as we increase the density (figures 6(a) and (b)), the width of
the normalized kernels of WCA fluids decreases marginally as
we increase the density from 0.376 (continuous line) to 0.840
(short-dashed line). The LJ system shows a slightly narrower
kernel (dotted line) compared to the WCA system at the same
state point (short-dashed line). Although the kernels obtained
from both functional forms are quite close to each other
(almost identical for values of y of about half of the atomic or
molecular diameters, i.e. y = 0.5σ ), we can see in figure 8(a)
and (b) that the structural normalization did not completely
remove the discrepancy between the normalized kernels of the

9
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Figure 5. Real space kernel of monatomic WCA fluids as predicted by Gaussian fits of the reciprocal space kernel data, equation (30):
(a) kernels obtained from two- and four-term Gaussian fits for a WCA fluid at ρa = 0.375 and T = 0.765; (b) kernels obtained from two- and
four-term Gaussian fits for a WCA fluid at ρa = 0.480 and T = 0.765; (c) differences between the kernels for a WCA fluid at ρa = 0.375 and
T = 0.765; (d) differences between the kernels for a WCA fluid at ρa = 0.480 and T = 0.765.

Figure 6. Real space viscosity kernels of monatomic and diatomic fluids, WCA (ρa = 0.375, T = 0.765), WCA (ρa = 0.480, T = 0.765),
WCA (ρa = 0.840, T = 1.0), LJ (ρa = 0.840, T = 1.0), chlorine (ρa = 1.088, T = 0.97): (a) kernels obtained from the four-term Gaussian
functional form equation (30); (b) kernels obtained numerically from the Lorentzian-type functional form equation (28).

WCA system at different densities, and the normalized kernels
of WCA, LJ and chlorine systems, for values higher than y =
σ . If we recall that figure 8(b) is based on a Lorentzian-type fit,
a further question as to whether the kernel differences are due
to numerical analysis, i.e. the choice of the fitting function or
due to improper structural factor arises. A four-term Gaussian
only shows a slightly narrower kernels which suggests a need
for a more comprehensive structural normalization.

5. Conclusion

The wavevector dependent viscosity of monatomic Lennard-
Jones, monatomic Weeks-Chandler-Andersen and diatomic
(liquid chlorine) fluids over a large wavevector range and
for a variety of state points has been computed. The
equilibrium molecular dynamics calculation involved the
evaluation of the transverse momentum density and shear
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Figure 7. Pair distribution function g(r) and normalization factors
ξg , equation (32): WCA ((a) ρa = 0.375, (b) ρa = 0.480 both at
T = 0.765), (c) WCA (ρa = 0.840, T = 1.0); LJ (d) (ρa = 0.840,
T = 1.0); chlorine (e) (ρa = 1.088, T = 0.97). For clarity, the PDFs
are shifted upwards by 3 units.

stress autocorrelation functions in both atomic and molecular
hydrodynamic representations for molecular fluids. The main
results can be summarized as follows:

(i) For monatomic fluids the shape of the normalized
viscosity kernel in reciprocal space in the low wavevector
region is the same for a whole range of densities
considered here. Although the normalized reciprocal
kernels insignificantly decreases with the density they
show a similar limiting behavior at high ky values. For
the LJ potential compared to a WCA potential we find
higher viscosities in the low wavevector region but the
normalized shape of the kernels are almost identical.

(ii) For liquid chlorine, the wavevector dependent viscosity
shows a similar behavior in both atomic and molecular
formalisms within statistical uncertainty.

(iii) While a relatively simple Lorentzian-type function fits the
atomic and diatomic data well over the entire range of
ky at all the state points it is not possible to analytically
inverse Fourier transform it to the real space domain.
Therefore one may consider an expansion up to a four-
term Gaussian which gives better accuracy in reciprocal
space compared to the Lorentzian-type function. Our
analysis of the high ky regime reveals that the two-term
equally weighted Gaussian functional form is inaccurate
in predicting the real space kernels whilst the unequally
weighted Gaussian only slightly improves the fit.

(iv) The overall conclusion is that the real space viscosity
kernel for chlorine has a width of roughly 4–6 atomic
diameters while for monatomic systems at high densities
the width is about 3–5 atomic diameters and 2–4 atomic
diameters at low densities. This means that generalized
hydrodynamics must be used in predicting the flow
properties of molecular fluids on length scales where the
gradient in the strain rate varies significantly on these
scales. Consequently a non-local constitutive equations
should be invoked for a complete description of flows at
atomic and molecular scales under such conditions.

Finally, our results for molecular fluids should also
provide a good test for more complex molecular systems and
the methodology can easily be used for instance in chain-like
molecules.

Figure 8. Normalized real space viscosity kernels of monatomic and diatomic fluids, WCA (ρa = 0.375, T = 0.765), WCA (ρa = 0.480,
T = 0.765), WCA (ρa = 0.840, T = 1.0), LJ (ρa = 0.840, T = 1.0), chlorine (ρa = 1.088, T = 0.97): (a) normalized kernels, shown in
figure 6(a), obtained from the four-term Gaussian functional form equation (30); (b) normalized kernels, shown in figure 6(b), obtained
numerically from the Lorentzian-type functional form equation (28).
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